Перайсці да зместу

Няроўнасць Чабышова

З Вікіпедыі, свабоднай энцыклапедыі

Няроўнасць Чaбышова, таксама вядомая як няроўнасць Б’енэме-Чaбышова, — няроўнасць з тэорыі меры і тэорыі імавернасцей. Яна была ўпершыню сфармулявана Б’енэме ў 1853 годзе (праўда, без доказу), а пасля даказана Чабышовым. Няроўнасць, якая выкарыстоўваецца ў тэорыі меры, з’яўляецца больш агульнай чым тая, што выкарыстоўваецца ў тэорыі імавернасцей — у тэорыі імавернасцей выкарыстоўваецца яе вынік.

Няроўнасць Чaбышова ў тэорыі імавернасцей

[правіць | правіць зыходнік]

У тэорыі імавернасцей, няроўнасць Чaбышова гарантуе, што ў любым размеркаванні імавернасцей, «амаль усе» значэнні будуць блізкія да сярэдняга, больш дакладна, доля значэнняў, аддаленых ад сярэдняга больш чым на стандартных адхіленняў, не большая за . Інакш кажучы, няроўнасць дае ацэнку імавернасці таго, што выпадковая велічыня прыме значэнне, далёкае ад свайго сярэдняга. Няроўнасць Чaбышова з’яўляецца вынікам няроўнасці Маркава.

Няхай выпадковая велічыня вызначана на імавернаснай прасторы , а яе матэматычнае чаканне і дысперсія канечныя. Тады

дзе

Калі , дзе  — стандартнае адхіленне і тады атрымаем

У прыватнасці, выпадковая велічыня з канечнай дысперсіяй адхіляецца ад сярэдняга больш, чым на стандартныя адхіленні, з імавернасцю менш Яна ж адхіляецца ад сярэдняга на стандартныя адхіленні з імавернасцю менш Іншымі словамі, у граніцах (2-х стандартных адхіленняў) знаходзяцца па меншай меры значэнняў, а ў граніцах знаходзяцца па меншай меры значэнняў.

Для найважнейшага выпадку аднамадальных размеркаванняў Няроўнасць Высачанскага — Пятуніна  (руск.) істотна ўзмацняе няроўнасць Чaбышова, уключаючы ў сябе дзель і набліжае няроўнасць Чaбышова да правіла трох сігм (ужываецца для нармальнага размеркавання). Як вынік, размеркаванне змяняецца, і ў граніцах знаходзяцца «амаль усе» (а дакладней, ) значэнні выпадковай велічыні.

Няроўнасць Чaбышова ў тэорыі меры

[правіць | правіць зыходнік]
  • Колмогоров, А. Н., Фомин, С. В.  (руск.). Элементы теории функций и функционального анализа. — изд. четвёртое, переработанное. — М.: Наука, 1976. — 544 с.